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During the last few years several authors have tried to generalize the concept of
Pade approximant to multivariate functions and to prove a generalization of Mon
tessus de Ballore's theorem. We refer, e.g., to 1. Chisholm and P. Graves-Morris
(Proc. Roy. Soc. London Ser. A 342 (1975), 341-372), J. Karlsson and H. Wallin
("Pade and Rational Approximations and Applications" (E. B. SalT and R. S.
Varga, Eds.), pp.83-100, Academic Press, 1977), C. H. Lutterodt (J. Phys. A 7,
No.9 (1974), 1027-1037; J. Math. Anal. Appl. 53 (1976), 89-98; preprint, Dept. of
Mathematics, University of South Florida, Tampa, Florida, 1981). However, it is a
very delicate matter to generalize Montessus de Ballore's result from C to CPo This
problem is discussed in Section 3. A definition of multivariate Pade approximant,
which was introduced by A. A. M. Cuyt ("Pade Approximants for Operators:
Theory and Applications," Lecture Notes in Mathematics No. 1065, Springer
Verlag, Berlin, 1984; J. Math. Anal. Appl. 96 (1983), 283-293) and which is repeated
in Section I, is a generalization that allows one to preserve many of the properties
of the univariate Pade approximants: covariance properties, block-structure of the
Pade-table, the e-algorithm, the qd-algorithm, and so on. It also allows one to for
mulate a Montessus de Ballore theorem, which is presented in Section 2; up to now
it is probably the most "Montessus de Ballore"-like version existing for the mul
tivariate case. Illustrative numerical results are given in Section 4. © 1985 Academic

Press, Inc.

1. MULTIVARIATE PADE ApPROXIMANTS

Let the multivariate function j(z I, ... , Zp) be holomorphic in the polydisc
B(O, PI ,... , pp ) = {(z I,· .. , Zp) E CP Ilzil < Pi} around the origin,

where

00

j(z) = L CkZ
k

k=O

for Z = (Zl ,... , zp) E B(O, PI ,... , pp),

CkZ
k = I Ck,· . 'kpz11

••• zZP
kj + ... +kp=k
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with
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Now choose nand m in N and find

and

nm+n

p(z)= L Aizi

i=nm

with a "Zil ••• "ip
il" ""'p 1 -p

it + ... +ip=i

nm+m

q(z) = L Bizi
j=nm

such that

wl'th B Zi " b "Zil ... zipi = L, it" ""Jp 1 P
i, + " " " +ip =i

00(/ . q - P) ~ nm + n + m + 1 (1 )

where 00, the order of the power series, is the degree of the first nonzero
term (a term Z~l.,. z~p is said to be of degree k l + '" + kp ). Note the shift
of the degrees of P and q over nm. In [3] we proved that this problem
always has a nontrivial solution for the bil"ip

'

Once we have calculated a pair of polynomials (p, q) that satisfies (1),
we are going to look for the irreducible form (P(n,mh(n,m»)(z) of (p/q)(z).
Different solutions (PI,qd and (P2,q2) of (1) have the same irreducible
form since we can prove the equivalency of the solutions; i.e., [4]

By computing (P(n,m/q(n,m))(z), possibly a polynomial t(z) has been can
celled in the numerator and denominator of (p/q)(z). Thus the degrees of
P(n,m) and q(n,m) may be shifted back a bit.

We can easily show that [4]

and this justifies the following definition.
Let adenote the exact degree of a polynomial.

DEFINITION 1.1. We call 01 P(n,m) = oP(n,m) - ooq(n,m) the pseudo-degree of
P(n,m) and 01q(n,m) = oq(n,m) - ooq(n,m) the pseudo-degree of q(n,m)'

For these pseudo-degrees we can write the inequalities

°1 P(n,m)";; n

01 q(n,m)";; m.
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Now we can formulate the definition of multivariate Pade approximant.

DEFINITION 1.2. The (n, m) multivariate Pade approximant «n, m)
MPA) is the irreducible form (P(n,m>!q(n.mj)(z) of (pjq)(z) where p and q
satisfy (1).

Because we cancelled I(z) in the numerator and denominator of (pjq)(z),
the pair of polynomials (P(n,m)(z), qln,m)(z)) no longer necessarily satisfies
(1). However, the following results hold.

Analogously to the univariate case, we can show that [4]

then we can also write

The term ooq(n,m) is a consequence of what is still left of the shift of the
degrees and the term - dn.m is a consequence of dividing out the
polynomial I(z) in the solution (p(z), q(z)).

Let us illustrate some of the preceding remarks by a simple example.
Consider

Take n = 1 = m. Then p(z) and q(z) are of the form

p(z) = alOz1+ aO I Z2 + a20zT+ all z I Z2+ a02z~

q(z) = blOz l + bOl z2+b20 zi + bll z l Z2 + b02Z~.

Note that the degrees are shifted over nm = 1. A solution of (l) is given by

p(z) = 10z 1 + 100zi-101zlz2
q(z) lOz 1 -101z 1z2

while the irreducible form is

P(1,I)(Z) _1 + lOz 1 -10.1z2
q(1,I)(Z) - 1 - 1O.1z2
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Here ooq(l,l)=O because we cancelled t(z)= lOz , in the numerator and
denominator; thus OIP(I,I)=OP(I,lj~ 1 and Olq(l,I)=Oq(l,I)~ 1.

Take n = 1 and m = 2. The (1,2) MPA is given by

P(I,2)(Z)

q(l,2j(Z)

Z 1- 1.01z2 + lOzi + lOz~ - 20.2z I Z2

Zl -1.01z2 + 10z~ -10.1z , z2 + 2.01z ,zr

The shift nm was equal to 2, but we could only divide out a polynomial
t(z) with 00 t = 1. So 00q (1,2) = 1 and this leftover of the shift of the degrees
has an influence on oo(f' q(l.2j - P(I,2))' The pseudo-degrees are 01 PO,2) =
2-aoq(I,2)~ 1 and 0Iq(l,2)=3-ooq(l,2)~2.

We will restrict ourselves now mainly to those multivariate Pade
approximants where ooq(n,m) = 0 and thus where the denominator starts
with a constant term. The shift over nm has disappeared in this case.

2, MONTESSUS DE BALLORE THEOREM

The ring H(B(O, PI'"'' Pp)) of holomorphic complex-valued functions in
B(O, PI'"'' pp ) inherits its topology from the ring C(B(O, PI'"'' pp )) of con
tinuous complex-valued functions in B(O, PI"'" Pp) and the topology on
C(B(O, PI"'" pp )) is given by the following metric. Let (Kj)j be a sequence
of compact subsets of B(O, PI ,..., pp ) such that

and
00

UKj =B(O, PI"'" pp )

j=1

and for elements f, g E C(B(0, PI'"'' Pp)) define

00 1 Ilf - gllKj
d(f, g) =I 2 j 1+ II f - II

J~I g KJ

where Ilf-gIIK=suPzEKI(f-g)(z)1 (this value is a well-defined finite
J J

real number since f is continuous and Kj is compact). So the topology of
H(B(O, PI ,..., pp )) is that of uniform convergence on compact subsets.

As a consequence we shall mean by

uniformly on compact K

where f and /; (i EN) are halomorphic functions on B(O, PI'"'' Pp), that

lim Ilfi- fIIK=O.
i ----+ 00

Before going on to the question of convergence of multivariate Pade



A MONTESSUS DE BALLORE THEOREM 47

approximants, we want to repeat a univariate theorem that will serve as a
starting point for our generalization. For the proof we refer to [6, p. 90].

THEOREM 2.1. Let f be a meromorphic function of one complex variable
in {ZEC Ilzl<p} with poles gl, ...,g/l (counted with their multiplicities).
Then for m fixed, m ~ J1., there exist m - J1. points g /l + I , ... , gm and a sub
sequence of ((P(n,mJ!q(n,m»)(z))n converging uniformly to f on compact subsets
of{zECllzl<p}\{gjI1~j~m}.

Montessus de Ballore's well-known univariate convergence theorem is
obtained as a corollary. We shall now try to formulate the multivariate
analogon of this theorem.

Let us consider a multivariate function f where the finite singularities off
within B(O, PI"'" pp ) are given by the zeros of the polynomial

/l

g/l(z) = L g;I··;pZ~I· .. z;
i1 + ... + ip=O

and let g/l(z) be such that

max !g/l(z)1 = 1
Z E B(O,PI,....Pp)

where B(O, PI"'" pp )= {ZECP Ilz;1 ~p;}. We shall denote the zero set of
g/l(z) by G/l:

From now on, for m fixed we shall always denote by

Sm = {P(n(k),m) (z) IoOq(n(k),m) = 0; k = 0,1, 2,...}
q(n(k),m)

the subsequence of ((P(n.mJ!q(n.m»)(z))n for which ooq(n(k),m) = O. So the
denominator of every element in Sm starts with a constant term different
from zero; i.e., q(n(k),m)(O) # O.

THEOREM 2.2. Suppose f(z) is analytic in the origin and meromorphic in
B(O, Pt>..., pp) with a pole set given by Gw Let m be fixed and m ~ J1. and let
Sm not be a finite set. Then there exists a polynomial q(z) of degree m with
zero set Q={zECPlq(z)=O} such that QnB(O,pt>...,pp)::;;G/ln
B(O, PI"", pp) and there exists a subsequence of ((P(n,mJ!q(n,m»)(z))n that con
verges to f uniformly on compact subsets of B(O, p!,..., pp)\Q.

640/43/1-4
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Proof Since g,,(z) . f(z) is holomorphic on B(O, PI'"'' Pp), we also have
that

is holomorphic on B(O, PI"'" pp). So we can write the following Cauchy
integral representation [5, p. 3]:

with

(
1 )Pf Rn.m(t)dt,···dtp

rn.m,il,··.,}p = 2ni . _ tit + 1 ••• tip + I •
II,I-pi I p

i= I, ... ,p

(2)

Since oo(f' q(n.m) - P(n,m») ~ 0oq(n.m) + n +m + 1 - dn.m, we know that
ooRn.m~ 0oq(n,m) + n + m + 1- dn.m· Now o(g,,' P(n.m») ~ Jl + oP(n,m) where
oP(n,m)=olP(n.m)+ooq(n.m)~n-dn,m+ooq(n.m) and so o(g,,'P(n.m))~

ooq(n.m) + n + m - dn.m. Consequently

(
1 )Pr ..=-n.m.}l .....}p 2' f
7U Ilil =Pi

i= I ....,p

Suppose that q(n.m)(z) has been normalized such that

max Iq(n,m)(z)1 = 1.
Z E lJ(O,Pl ..... Pp)

We can also bound (g,,' f)(z) by

Mgf= max I(gll' f)(z}1 < etJ.
J' . Z E B(O.Pl, ....Pp)

Thus

with

11 I
pM (2n)P P .,. p

~ _ g~'f I P

1r n.m.ih....ipl '" 2ni p{l + I ... p{: + I .
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(4)

which goes to zero if n --+ C1J and Z E B(O, PI ,..., pp ).

The sequence of denominators of the elements of Sm is uniformly boun
ded by 1 on compact subsets of 11(0, PI, ..., Pp) because of the normalization
we introduced. Hence, by Vitali's theorem [5, p. 11], it contains a con
vergent subsequence. We shall denote this by (q(ni(kJ.m)(Z)); --+ q(z) on com
pact subsets of B(O, PI,'''' pp ) where q(z) is also a polynomial of degree m.

Let us take a look at the sequence (P(ni(kJ.mj);· Since g!,(z)f(z) q(n,(k),mj
g!'(z) P(ni(k},m}(Z) goes to zero for z in B(O, Pl"'" p p ) and since q(ni(k),m)(Z)
converges to q(z) for i --+ 00 and z in B(O, PI ,..., pp ) we can also write
(P(nj(k),m)(Z»; --+ p(z) on compact subsets of B(O, PI"'" pp ) where p(z) is a
holomorphic function on B(O, PI, ..., Pp). Then in the limit (g!" f' q
g!" p)(z) = 0 for z in B(O, PI'"'' pp). If z E G!, n B(O, Ph"" pp ), then g!'(z) = 0;
since (f. g!')(z) # 0 in a dense set of G!, n B(O, PI,"" pp ) we have q(z) = 0.
Consequently GI' n B(O, PI ,..., pp ) is a subset of Q n B(O, PI ,..., pp ). Let K be
a compact subset of B(O, PI"'" pp)\Q. Then for i large enough we know
that q(n;(k),m)(Z)1'O for z in K. Let P; be chosen such that
K c 11(0, p~ ,..., p;) c B(O, p \ ,... , Pp)' Then, because of (4), we can write

(
p' )h (PI ))P

IIRni(k),m\lK~Mgd L .....!. ... .J!. ,
h+'" +)p;3ni(k)+m+ l-dn;lkl,m PI Pp

We write r; = l( lip )(n;(k) +m - dni(k).m + I)J where L J denotes the integer
part and P is the number of variables. So

If i --+ 00, r; --+ 00 also and thus 1/ f - P(ni(k).m/q(n,(k).m)11 K --+ °on compact
subsets K of B(O, PI'''', pp)\Q.

From the multivariate analogon of Theorem 2.1 we now get the follow
ing multivariate corollary.

COROLLARY 2.1. Suppose f(z) is analytic in the origin and meromorphic
in B(O, PI'"'' Pp) with a pole set given by G1" Let SJ1. not be afinite set. Then
the sequence «P(n{k),!')!q(n(k).I'»(Z»b i.e., the elements in SI" converges to f
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uniformly on compact subsets of B(O, PI,.", pp)\GI' and the sequence

(q(n(k),i')(z)h converges to gi'(z) uniformly on compact subsets of

B(O, PI'"'' pp); i.e., the poles of (P(n(k).l'h(n(k).I'»)(Z) converge to the poles of

f
Proof In the proof of Theorem 2.1 we obtained that SI' contains a con

vergent subsequence q(n,(k),I')(Z) -+ q(z) uniformly on compact subsets of
B(O, PI ,..., pp) and that GI' f1 B(O, PI ,..., pp) is a subset of Q f1 B(O, Pl>"" pp).

Here oq ~ Jl = ogw
Since each of the irreducible factors in gl'(z) (counted with its mul

tiplicity) has points inside B(O, PJ,"" pp) where it vanishes, we know that
each of the irreducible factors in gl'(z) is also a factor of q(z) [1, p. 232].
Hence q(z)=gi'(z), Consequently the whole sequence (q(n(k),I')(Z)) must
converge to gi'(z) uniformly on compact subsets of B(O, PI"'" pp) since
every subsequence contains a uniformly convergent subsequence to gi'(z)

on compact subsets of B(O, PI"'" pp), and the whole sequence (P(n(k),I')(Z))

converges to p(z) uniformly on compact subsets of B(O, PI'"'' pp ). So we
can finish the proof as in Theorem 2.2.

3. DISCUSSION

We shall now discuss the differences between these theorems and the
results obtained by other authors.

Many papers have been published that define a generalization of the
Pade approximant for multivariate functions. Each definition of a mul
tivariate Pade approximant (P/q)(zl"'" zp) is based on

00

(j·q-P)(ZI,.",Zp)= L dki·kpz71 .. ·z~p
ki, ... ,kp= 0

with

The set E is called the interpolation set; the choice of E, P(ZI,"" zp), and
q(z 1"'" zp) determines the type of approximant. In [4] the choices for P, q,
and E are given for Levin's general order Pade-type rational approximants
[7], Chisholm's diagonal approximants, Hughes Jones' off-diagonal
approximants, Lutterodt's approximants, Karlsson-Wallin approximants,
and the multivariate Pade approximants repeated here in Section 2. For the
approximants introduced by the Canterbury group, by Karlsson and
Wallin, and by Lutterodt a convergence result as given in Theorem 2.1 here
is not possible because the transition from (2) to (3) is not valid. For their
definition terms of gi" p(ZI>"" zp) can influence rn,m,}l,"..}p with Ul>"" jp) E

NP\E. Thus Rn.m(z) cannot be bounded by (4) as is done here.
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We refer to [6] where this kind of remark is made for the rational
approximants introduced by the Canterbury group and those introduced
by Karlsson and Wallin. We refer the reader to [10] where he or she can
establish a serious gap in the convergence proofs for Lutterodt's
approximants because this remark is not taken into account.

4. NUMERICAL EXAMPLE

Again consider

Take m= 1 and

n(k) =k

=k+2j

for k=O•..., 4

for k=2j+3. 2j+4. andj= 1. 2, 3,....

The (n(k). 1) MPA equals

for k>2.

for k=2

for k=O

for k= 1

1
1-10z1

1+ 10z1 -10.lz2
1-10.lz2

1+ lOz I - (1000/101) Z2 + (201/101) z I z2

1- (1000/101) Z2

:Li~6 CiZi -lOz2:Li~6-1 CiZi

l-lOz2

Clearly the q(II(k),I)(Z) converge to 1-lOz2 and

III - (n(k). 1) MPAIIK= 11:L~"(k)+ I C;zi-l0z2 :L~II(k) c;zill -+0
l-lOz2 K

for k -+ 00 and K a compact subset of B(O. Ph P2)\ {z E C2 I Z2 = 0.1}. In
Table 4.1 one can find the function values of the (n. 1) MPA (n = 0,...• 18)
for z I = 0.5 and z2 = 0.2. which is outside the region of convergence of the
Taylor series development. One can compare these values with

1(0.5,0.2) = -3.9001665833531.

All the computations were performed in double precision arithmetic.
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TABLE 4.1

-o.2500000000000
-3.9019607843137
-4.3040404040404
-3.9OOOOOOOOOOOO
- 3.9000000000000
-3.9001666670139
oo6944סס3.89950-

-3.9001666666667
-3.9001666666666
-3.9001665833333
- 3.9001669166668
-3.9001665833334
-3.9001665833334
-3.9001665833530
-3.9001665832729
-3.9001665833566
-3.9001665833421
-3.9001665833639
-3.9001665833639
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